Baccalauréat juin 2010 MATHÉMATIQUES Série ES

sujet: Antilles Guyane

exercice 1 ( 5 points ) commun à tous les candidats

La courbe Cf donnée en annexe 1 est la représentation graphique dans un repère orthogonal d'une fonction f définie, dérivable et strictement décroissante sur l'intervalle 1+ .
La courbe Cf passe par le point de coordonnées 30 ; on sait de plus que la droite d'équation y=-2 est asymptote à la courbe Cf.

1re partie  Étude préliminaire de f

Dans cette partie, aucune justification n'est demandée.

  1. Donner la limite de f en + ∞ .

  2. Résoudre graphiquement l'équation fx=0.

  3. Préciser le signe de f sur 1+ .

2e partie  Étude d'une fonction composée

Pour cette partie, des justifications sont attendues.

Soit la fonction g définie sur l'intervalle 1+ par gx=expfx.

  1. Déterminer la limite de g lorsque x tend vers + ∞ .

  2. Résoudre sur l'intervalle 1+ l'équation gx=1.

3e partie

La fonction f est la dérivée d'une fonction F définie sur 1+ .

  1. La fonction F est représentée sur l'une des 3 courbes données en annexe 2. Préciser laquelle, en justifiant votre réponse.

  2. Déterminer graphiquement F2 et F3 avec la précision permise par le graphique.

  3. On s'intéresse au domaine du plan délimité par la courbe Cf , l'axe des abscisses et les droites d'équations respectives x=2 et x=3. On notera A l'aire de ce domaine, exprimée en unités d'aire.
    Donner une méthode permettant de déterminer une valeur approchée de l'aire du domaine précédemment défini et en donner une estimation.

4e partie

On donne l'expression de la fonction f définie sur l'intervalle 1+ par : fx=2e-x+3-2.
Calculer l'aire A du domaine (en unités d'aire) ; on donnera la valeur exacte à l'aide du réel e, puis l'arrondi au centième.


annexe 1

Courbe représentative de la fonction f : L'illustration svg n'est pas visible par votre navigateur.

annexe 2

Courbe 1

Courbe 1 : L'illustration svg n'est pas visible par votre navigateur.

Courbe 2

Courbe 2 : L'illustration svg n'est pas visible par votre navigateur.

Courbe 3

Courbe 3 : L'illustration svg n'est pas visible par votre navigateur.

exercice 2 ( 5 points ) candidats n'ayant pas suivi l'enseignement de spécialité

Un bijoutier propose des perles de culture pour fabriquer des bijoux. Il dispose dans son stock de deux types de couleurs : les perles argentées et les perles noires.
Chacune de ces perles a :

On sait que dans son stock, 44 % des perles sont équilibrées, deux cinquièmes sont baroques et les autres sont sphériques. De plus, 60 % des perles sont argentées dont 15 % sont sphériques et la moitié sont baroques.

  1. Recopier le tableau des pourcentages ci-dessous et le compléter à l'aide des données de l'énoncé (on ne demande pas de justification).

     SphériqueÉquilibréeBaroqueTotal
    Argentée    
    Noire    
    Total   100 %
  2. Le bijoutier choisit une perle du stock au hasard. On suppose que chaque perle a la même probabilité d'être choisie.
    On note :
    ¯  Al'événement : « la perle est argentée » ;
    ¯  N l'événement : « la perle est noire » ;
    ¯  S l'événement : « la perle est de forme sphérique » ;
    ¯  E l'événement : « la perle est de forme équilibrée » ;
    ¯  B l'événement : « la perle est de forme baroque ».

    Toutes les probabilités seront données sous forme décimale exacte.

    1. Quelle est la probabilité que le bijoutier choisisse une perle de forme baroque ?

    2. Quelle est la probabilité que le bijoutier choisisse une perle noire de forme équilibrée ?

    3. Déterminer la probabilité de l'événement AB puis interpréter ce résultat.

    4. Le bijoutier a choisi une perle de forme baroque. Quelle est la probabilité qu'elle ne soit pas argentée ?

  3. Pour une création de bijou original, le bijoutier choisit dans son stock quatre perles au hasard et de manière indépendante. On admet que le nombre de perles est suffisamment grand pour que le choix d'une perle soit assimilé à un tirage avec remise.

    1. Calculer la probabilité qu'aucune des quatre perles choisies ne soit argentée.

    2. Calculer la probabilité qu'il y ait au moins une perle sphérique parmi les quatre perles choisies (donner une valeur approchée de ce résultat à 10− 3 près).


EXERCICE 2 ( 5 points ) candidats ayant suivi l'enseignement de spécialité

M. et Mme Martin, qui habitent une grand ville, aiment beaucoup voyager. Ils prévoient toujours de partir pendant l'été, soit à l'étranger, soit de visiter une région en France.
S'ils sont restés en France une année donnée, la probabilité qu'ils partent à l'étranger l'année suivante est de 0,4.
Par contre, s'ils sont partis à l'étranger une année donnée, la probabilité qu'ils retournent à l'étranger l'années suivante est de 0,7.
En été 2009, ce couple est parti à l'étranger.
Pour tout entier naturel n, on note Pn la matrice ligne anbn traduisant l'état probabiliste l'année (2009 + n), où an désigne la probabilité que ce couple soit resté en France l'année (2009 + n) et bn la probabilité que ce couple soit parti à l'étranger l'année (2009 + n).

partie a

    1. Traduire les données par un graphe probabiliste dont les sommets seront notés F et E (F pour France et E pour étranger).

    2. En déduire la matrice de transition en prenant tout d'abord F puis E pour l'ordre des sommets. On notera M cette matrice.

    1. Donner P0, l'état probabiliste initial, l'année 2009.

    2. On donne les résultats suivants : M2=0,480,520,390,61 ; M3=0,4440,5560,4170,583 ; M4=0,43320,56680,42510,5749.
      En choisissant la bonne matrice, calculer P3. En déduire la probabilité que ce couple parte à l'étranger en 2012 (On donnera le résultat sous forme décimale arrondie au centième).

  1. Soit P la matrice ligne xy donnant l'état stable où x et y sont deux réels positifs tels que x+y=1.
    Déterminer l'état stable puis interpréter le résultat.

partie b

  1. Montrer que pour tout entier naturel n on a : an+1=0,3an+0,3.

  2. Pour tout entier naturel n, on pose un=an-37.

    1. Montrer que la suite un est une suite géométrique dont on précisera la raison et le premier terme.

    2. En déduire l'expression de un , puis celle de an en fonction de n.

    3. Déterminer la limite de la suite an lorsque n tend vers + ∞ . Que retrouve-t-on ?


EXERCICE 3 ( 4 points ) commun à tous les candidats

Le tableau ci-dessous donne pour 6 années le nombre de spectateurs (en millions) dans les cinémas en France.

Source : INSEE - d'après le Centre National de la Cinématographie (CNC)
Années199719992001200320052007
Rang de l'année xi1i60246810
Nombre (en millions) de spectateurs yi1i6149,3153,6187,5173,5175,5177,9

partie 1

Pour chacune des questions ci-dessous, trois réponses sont proposées et une seule est exacte. Indiquer sur la copie le numéro de la question et recopier la réponse choisie. Aucune justification n'est demandée.
Une bonne réponse rapporte 0,5 point. Une mauvaise réponse enlève 0,25.L'absence de réponse ne rapporte, ni n'enlève de point. Si le total des points est négatif, la note globale attribuée à l'exercice est 0.

  1. Le taux d'augmentation du nombre de spectateurs de 1997 à 1999 est donné par le calcul suivant :

    153,6149,3

    153,6-149,3153,6

    153,6149,3-1

  2. En supposant que le nombre de spectateurs augmente de 1 % tous les ans, à partir de 2007, le nombre de spectateurs en 2010 est donné par le calcul suivant :

    1,01×177,9×3

    1,013×177,9

    0,013×177,9

  3. Entre 1997 et 2007 , l'augmentation annuelle moyenne, en pourcentage, du nombre de spectateurs est, arrondie à 0,01 % :

    1,77%

    1,92%

    3,57%

  4. Sachant que de 1998 à 1999, le nombre de spectateurs (en millions) dans les cinémas en France a diminué de 10 %, le nombre de spectateurs (en millions) en 1998 arrondi au dixième était :

    139,6

    170,7

    138,2

  5. On considère un nuage de points Mixiyi, pour 1i6, construit à partir des données du tableau donné en début d'exercice. Les coordonnées du point moyen de ce nuage sont :

    2002169,55

    5169,55

    301017,3

  6. Supposons que l'on ait effectué un ajustement affine du nuage de points par la méthode des moindres carrés. (Dans l'équation de la droite de régression de y en x de la forme y=ax+b, on choisira les coefficients a et b arrondis au dixième). D'après cet ajustement :

    1. Le nombre de spectateurs sera d'environ 200 millions en :

      2015

      2013

      2010

    2. L'estimation (en millions) arrondi au dixième, du nombre de spectateurs en 2015 est :

      11 439,6

      228,4

      206

partie 2

Justifier la réponse donnée à la question 3 de la partie 1.


exercice 4 ( 6 points ) commun à tous les candidats

partie a

  1. Soit f la fonction définie sur l'intervalle 020 par fx=0,3x+1,5-0,9lnx+1.
    On admet que f est dérivable sur l'intervalle 020. Étudier les variations de f sur 020 et dresser son tableau de variation.

  2. On donne la fonction g définie sur l'intervalle 020 par gx=-0,05x-1,5+0,9lnx+1.
    On admet que g est strictement croissante sur l'intervalle 017 et strictement décroissante sur l'intervalle 1720.

    1. Justifier qu'il existe un unique réel x0 dans l'intervalle 017 tel que gx0=0. Donner un encadrement de x0 d'amplitude 10− 2.

    2. En déduire le signe de g (x) sur 020.

partie b

Dans cette partie, on pourra utiliser les résultats de la partie A. On demande de justifier les réponses

Dans une petite ville, un promoteur immobilier projette de construire un lotissement dont le nombre de maisons ne pourra pas dépasser 20 maisons construites.
Le coût de production, en millions d'euros, pour n maisons construites (0n20) est donné par Cn=0,3n+1,5-0,9lnn+1.
Chaque maison est vendue 250 000 euros.

    1. Calculer C0. Donner une interprétation de ce résultat dans le contexte de l'énoncé.

    2. Combien de maisons le promoteur doit-il prévoir de construire pour que le coût de production soit minimal ?

    1. Montrer que le bénéfice réalisé pour la fabrication de n maisons est, en millions d'euros, donné par Bn=-0,05n-1,5+0,9lnn+1.

    2. Déterminer le nombre de maisons à construire pour que le bénéfice soit maximal. Quel est alors ce bénéfice (à 100 euros près) ?

    3. Déterminer le nombre minimal de maisons à construire pour que le promoteur ne travaille pas à perte.

      Pour la question suivante, on explicitera la démarche utilisée. Toute trace de recherche même incomplète, ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

    4. À partir de combien de maisons construites le bénéfice du promoteur est-il supérieur à 200 000 euros ?



Télécharger le sujet au format Word


Rechercher des exercices regoupés par thème      

[ Accueil ]

L'affichage recommandé pour une meilleure lisibilité est de 1280 × 1024.

math@es

✉ A.Yallouz

Powered by MathJax