EXERCICE 1

Une entreprise vend quatre types de produits notés P_1 , P_2 , P_3 et P_4 . La matrice des commandes de trois clients notés X, Y et Z est

$$C = \begin{pmatrix} 7 & 12 & 5 & 15 \\ 13 & 0 & 12 & 5 \\ 2 & 7 & 13 & 8 \end{pmatrix}$$

les lignes étant relatives aux clients et les colonnes aux produits.

- 1. Effectuer le produit $C \times \begin{pmatrix} 1 \\ 1 \\ 1 \\ 1 \end{pmatrix}$ et interpréter le résultat.
- 2. Effectuer le produit $\begin{pmatrix} 1 & 1 \end{pmatrix} \times C$ et interpréter le résultat.
- 3. Les prix unitaires de chacun des quatre produits sont respectivement 45 €, 15 €, 20 €et 30 €. Calculer à l'aide d'un produit de deux matrices, le montant en euros de la commande de chacun des clients.

EXERCICE 2

Une usine fabrique deux articles A et B à partir de quatre composants différents C_1 , C_2 , C_3 et C_4 .

La fabrication de chacun des composants nécessite trois ressources *X*, *Y* et *Z* (*par exemple travail, matières premières et énergie*).

Les deux tableaux suivants présentent les quantités de composants utilisées pour produire un article A et un article B et les quantités de ressources, exprimées dans la même unité, nécessaires à la fabrication de chaque composant.

	C_1	C_2	C_3	C_4
A	3	2	2	1
В	4	3	0	2

	X	Y	Z
C_1	10	15	3
C_2	15	18	8
C_3	1	6	2
C_4	4	11	2

- 1. À l'aide d'un produit de matrices, calculer les quantités de chaque ressource intervenant dans la fabrication de chaque article.
- 2. À l'aide d'un produit de matrices, calculer les quantités de ressources nécessaires à la production de 30 articles *A* et 50 articles *B*.

EXERCICE 3

Une économie fictive est structurée en trois secteurs *A*, *B* et *C* (*par exemple Agriculture, Industrie et Services*). Une partie de la production de chaque secteur ne sert pas directement à la **consommation finale** des consommateurs.

En effet, chaque secteur utilise une part de la production des différents secteurs pour travailler, il s'agit des **consommations intermédiaires**.

On considère dans tout l'exercice que :

- la production d'une unité du secteur *A* consomme 0,1 unité de production du secteur *A*, 0,2 unités de production du secteur *B* et 0,1 unité de production du secteur *C*;
- la production d'une unité du secteur *B* consomme 0,3 unités de production du secteur *A* et 0,25 unités de production du secteur *B* et 0,2 unités de production du secteur *C*;
- la production d'une unité du secteur *C* consomme 0,2 unités de production du secteur *B* et 0,2 unités de production du secteur *C*;
- la production totale de chaque secteur est la somme de toutes les consommations intermédiaires et de la consommation finale des consommateurs.
- 1. On suppose dans cette question que le vecteur colonne des productions totales de chacun des trois secteurs est $P = \begin{pmatrix} 150 \\ 300 \\ 200 \end{pmatrix}$.
 - a) À l'aide d'un produit de matrices, calculer le vecteur colonne des consommations intermédiaires de chacun des trois secteurs.
 - b) Quelles sont les consommations finales des consommateurs de chacun des trois secteurs?
- 2. On suppose dans cette question que la demande des consommations finales est de 81 unités du secteur *A*, 144 unités du secteur *B* et 108 unités du secteur *C*.

Déterminer la production totale de chaque secteur pour satisfaire la demande des consommations finales?