
La courbe C_f représentative d'une fonction f a pour équation $y = \frac{4x+1}{2x-3}$.

La courbe C_f est tracée dans le plan muni d'un repère orthogonal en annexe ci-dessous.

- 1. a) Quel est l'ensemble de définition de la fonction f?
 - b) En quel(s) point(s) la courbe C_f coupe-t-elle l'axe des ordonnées; l'axe des abscisses?
 - c) Déterminer les réels a et b tels que $f(x) = a + \frac{b}{2x-3}$.
 - d) 2 a-t-il un antécédent par f?
 - e) Étudier le sens de variation de la fonction f sur l'intervalle $\left|-\infty; \frac{3}{2}\right|$.
 - f) En déduire un encadrement de f(x) si $x \in [-1;1]$.
- 2. Soit g la fonction affine telle que g(-2) = -11 et g(8) = 9.
 - a) Déterminer l'expression de *g* en fonction de *x*.
 - b) Tracer la courbe *D* représentative de la fonction g dans le repère orthogonal donné en annexe.
- 3. a) Vérifier que $f(x) g(x) = \frac{-4(x^2 6x + 5)}{2x 3}$
 - b) Étudier les positions relatives des courbes C_f et D.
 - c) Calculer les coordonnées des points d'intersection des courbes C_f et D.

ANNEXE

