Baccalauréat technologique 2016 MATHÉMATIQUES Série STI2D

sujet : Antilles Guyane 2016

exercice 1 ( 4 points )

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse à une question ne rapportent ni n'enlèvent de point.
Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse.

i désigne le nombre complexe de module 1 et d'argument π2.
ln désigne la fonction logarithme népérien.

  1. La forme algébrique du nombre complexe 1+2i3-i est :

    a. 12+710i

    b. 110+710i

    c. 18+78i

    d. « Aucune des réponses a. - b. - c.».

  2. La forme exponentielle du nombre complexe 2-2i3 est :

    a. 4e-iπ6

    b. -4eiπ6

    c. 4e-iπ3

    d. 16e-iπ3

  3. Pour tout réel a strictement positif, lna+ln2a est égal à :

    a. ln(3a)

    b. 3lna

    c. ln(2a2)

    d. 2ln(a2)

  4. Une solution f de l'équation différentielle 3y+12y=0 est la fonction définie pour tout réel t par :

    a. f(t)=sin(4t)

    b. f(t)=sin(2t)

    c. f(t)=2sin(3t)

    d. « Aucune des réponses a. - b. - c.».


EXERCICE 2 ( 7 points )

Sur le graphique ci-dessous, 𝒞 est la courbe représentative, dans le repère orthonormé (O;𝚤,𝚥), d'une fonction f définie sur .

Courbe représentative de la fonction f : L'illustration svg n'est pas visible par votre navigateur.

partie a - Étude graphique

La droite T est tangente à 𝒞 au point A(2,5;1,5) et d'ordonnée à l'origine 2,75.
L'axe des abscisses est asymptote horizontale à 𝒞 au voisinage de +.
Déterminer graphiquement et indiquer sur votre copie :

  1. f(1) ;

  2. f(2,5) ;

  3. Une équation de la tangente T ;

  4. limx+f(x) ;

partie b - Modélisation

On admet qu'il existe deux réels a et b tels que pour tout réel x, f(x)=(ax+b)e-x+2,5.

  1. Calculer f(x) en fonction de a et b.

  2. Exprimer en fonction des réels a et b les nombres suivants f(1) ; f(2,5).

  3. Déduire des questions précédentes un système d'équations vérifiées par a et b.

  4. Résoudre ce système et en déduire l'expression de f(x) en fonction de x.

partie c - Étude algébrique

On admet que pour tout réel x, f(x)=(x-1)e-x+2,5.

  1. Déterminer la limite de f en -.

    1. Montrer que pour tout réel x, f(x)=e2,5(xex-1ex).

    2. Déterminer la limite de f en +

    1. Calculer f(x) pour tout réel x.

    2. Étudier le signe de f et en déduire le tableau des variations de la fonction f en faisant figurer les limites trouvées précédemment.

partie d - Application

On souhaite déterminer l'aire S en unité d'aire de la surface d'une des faces principales du boîtier plastique de l'appareil auditif schématisé ci-contre.
Une modélisation mathématique a permis de représenter cette surface.

dessin du boîtier : L'illustration svg n'est pas visible par votre navigateur.

Dans le plan muni du repère orthonormé (O;𝚤,𝚥) cette surface correspond à la parie du plan limitée par :

  1. Sur l'annexe fournie, hachurer la surface décrite précédemment.

Pour déterminer l'aire S de cette surface, on décompose le calcul en deux parties.

  1. Calculer la valeur exacte de l'intégrale suivante : I=22,5g(x)dx.

  2. on souhaite calculer la valeur exacte de l'intégrale suivante : J=12,5f(x)dxf est la fonction dont une expression est donnée dans la partie C.

    1. Vérifier qu'une primitive F de la fonction f sur est la fonction définie par : pour tout réel x, F(x)=-xe-x+2,5.

    2. En déduire la valeur exacte de l'intégrale J.

    1. Déterminer la valeur exacte de l'aire S en unité d'aire.

    2. En déduire la valeur arrondie à 10-2 de l'aire S en unité d'aire.

ANNEXE

Courbes représentatives des fonctions f et g : L'illustration svg n'est pas visible par votre navigateur.

exercice 3 ( 3 points )

Les deux parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire, à 10-3 près.

Un manufacturier de pneumatiques produit des pneus d'avions en grande quantité.
Il s'engage à livrer des produits spécifiques aux avionneurs de masse maximum garantie de 124 kg. Ces pneus doivent supporter une charge nominale de 10 tonnes, des vitesses pouvant aller jusqu'à 420 km.h-1 et des températures instables allant de -40°C (en altitude) à 250°C (au moment du décollage).

partie a

On note M la variable aléatoire qui, à chaque pneu prélevé au hasard dans la production, associe sa masse en kilogramme. On admet que la variable aléatoire M suit la loi normale de moyenne μ=121,37 et d'écart-type σ=0,42.

  1. Déterminer la probabilité qu'un pneu prélevé au hasard ait une masse en kg comprise entre 120,95 et 121,79.

  2. Déterminer la probabilité qu'un pneu prélevé au hasard ait une masse en kg supérieure à 122,63.

partie b

Un pneu trop lourd entraîne une augmentation de la consommation du kérosène.
Lorsque la masse d'un pneu reçu par une compagnie aérienne dépasse 121,9 kg cela entraîne des pénalités financières pour le manufacturier.
Sur la chaîne de fabrication, on prélève de façon aléatoire un échantillon de 36 pneus et on constate que 2 d'entre eux ont une masse qui dépasse 121,9 kg.

  1. Quelle est la fréquence des pneus dans l'échantillon prélevé dont la masse dépasse 121,9 kg ?

  2. Déterminer l'intervalle de confiance avec un niveau de confiance de 95 % de la proportion de pneus dont la masse dépasse 121,9 kg dans la production.
    On rappelle que lorsqu'une fréquence f est mesurée dans un échantillon de taille n , l'intervalle de confiance à 95 % de la proportion dans la population est donné par :I=[f-1,96f(1-f)n;f+1,96f(1-f)n]

  3. Donner une interprétation du résultat précédent.


EXERCICE 4 ( 6 points )

Les deux parties de cet exercice peuvent être traitées de manière indépendante. Les résultats seront arrondis, si nécessaire, à 10-3.

Par souci de santé, d'environnement ou simplement pour le plaisir du goût l'alimentation biologique s'invite de plus en plus dans les assiettes des français.
Deux fermes auvergnates décident de se convertir dans la production biologique.

partie a

En 2015, la ferme Bernard décide de cultiver 2 hectares selon le mode de production biologique et d'augmenter cette surface de production de 20 % par an les années suivantes.
On note Sn la surface, en hectare, cultivée selon le mode de production biologique, durant l'année « 2015 + n ».

  1. Quelle sera la surface cultivée en hectare selon le mode de production biologique durant l'année 2016, puis durant l'année 2017 ?

  2. Quelle est la nature de la suite (Sn) ? Justifier.

  3. Exprimer Sn en fonction de n.

  4. La ferme Bernard dispose d'une surface de 10 hectares. Durant quelle année la totalité de la ferme sera cultivée selon le mode de production biologique ? Justifier par le calcul.

partie b

En 2015, la ferme Dupont décide de cultiver 1 hectare, selon le mode de production biologique et d'augmenter cette surface de 0,8 hectare par an.
On note un la surface cultivée selon le mode de production biologique, durant l'année « 2015 + n », exprimée en hectare.
La production biologique impose aux sols un temps de repos pour se reconstituer. La ferme Dupont dispose d'une surface de 18 hectares. Afin de garder un certain bénéfice, la ferme Dupont limite sa production biologique à 70 % de la surface totale de la ferme chaque année.

On considère l'algorithme suivant :

variables
  • K un entier naturel
  • U un nombre réel
début
  • U prend la valeur 1

    Pour K allant de 1 à 10
    U prend la valeur U+0,8
    Fin Pour

  • Afficher U
fin
  1. Tester cet algorithme. Pour cela on complétera le tableau suivant donnant les valeurs de K et U :

    Valeur de K 1
    Valeur de U 1
  2. Quelle est la valeur finale affichée par cet algorithme ? À quoi correspond-elle ?

  3. La limite fixée par la production biologique est-elle atteinte pour cette année-là ?

  4. Réécrire l'algorithme afin qu'il affiche l'année à partir de laquelle la limite imposée par une production biologique sera atteinte.



Rechercher des exercices regoupés par thème


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.