Baccalauréat technologique 2016 MATHÉMATIQUES Série STI2D

sujet : France métropolitaine, La Réunion 2016

exercice 1 ( 4 points )

Cet exercice est un questionnaire à choix multiples. Pour chacune des questions suivantes, une seule des quatre réponses proposées est exacte. Aucune justification n'est demandée. Une bonne réponse rapporte un point. Une mauvaise réponse, plusieurs réponses ou l'absence de réponse à une question ne rapportent ni n'enlèvent de point.
Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse.

Le plan complexe est rapporté à un repère orthonormé direct Ouv . On note i le nombre complexe vérifiant i2=-1.

  1. Un argument du nombre complexe 2+2i est égal à :

    a. -π4

    b. -9π4

    c. 22

    d. π4

  2. Le nombre complexe eiπ5×ei2π15 est égal à :

    a. 12+32i

    b. 32+12i

    c. 0,5+0,866×i

    d. 0,5+0,8660254038×i

  3. On considère les points A et B d'affixes respectives zA=2eiπ3 et zB=52ei5π6. Le triangle OAB est :

    a. isocèle en O

    b. rectangle en O

    c. rectangle et isocèle en B

    d. isocèle en B

  4. Pour tout nombre réel θ le nombre complexe eiθ+1eiθ est égal à :

    a. 2cosθ

    b. cosθ+isinθ

    c. 1

    d. 2isinθ


EXERCICE 2 ( 6 points )

Un centre de vacances possède une piscine de 600 m3 soit 600 000 litres. L'eau du bassin contient du chlore qui joue le rôle de désinfectant. Toutefois le chlore se dégrade et 25 % de celui-ci disparaît chaque jour, en particulier sous l'effet des ultra-violets et de l'évaporation.
Le 31 mai à 9 h, le responsable analyse l'eau du bassin à l'aide d'un kit distribué par un magasin spécialisé.
Le taux de chlore disponible dans l'eau est alors de 1,25 mg/L (milligrammes par litre).

Document

Réglementation des piscines publiques

Paramètres contrôlésSeuils de qualité réglementaireIncidences sur la qualité de l'eau
Présence de ChloreAu minimum 2 mg/L< 2 mg/L : sous chloration Risque de prolifération bactérienne dans l'eau
Au maximum 4 mg/L> 4 mg/L : surchloration Irritation de la peau

Agence Régionale de Santé


À partir du ler juin pour compenser la perte en chlore, la personne responsable de l'entretien ajoute, chaque matin à 9 h, 570 g de chlore dans la piscine.
Pour le bien-être et la sécurité des usagers, le responsable souhaite savoir si cet apport journalier en chlore permettra de maintenir une eau qui respecte la réglementation donnée par l'Agence Régionale de Santé pour les piscines publiques.

partie a

  1. Pour tout entier naturel n on note un la quantité de chlore disponible, exprimée en grammes, présente dans l'eau du bassin le nième jour suivant le jour de l'analyse, immédiatement après l'ajout de chlore. Ainsi u0 est la quantité de chlore le 31 mai à 9 h et u1 est la quantité de chlore le 1er juin à 9 h après l'ajout de chlore.

    1. Montrer que la quantité de chlore, en grammes, présente dans l'eau du bassin le 31 mai à 9 h est u0=750.
      Au regard des recommandations de l'agence régionale de santé, le responsable pouvait-il donner l'accès à la piscine le 31 mai ?

    2. Montrer que u1=1132,5.

    3. Justifier que pour tout entier naturel n, un+1=0,75un+570.

    4. La suite un est-elle géométrique ?

  2. Soit l'algorithme ci-dessous :

    Variables

    u : un nombre réel
    N : un nombre entier naturel
    k : un nombre entier naturel

    Initialisation

    Saisir la valeur de N
    u prend la valeur 750

    Traitement

    Pour k allant de 1 à N
    u prend la valeur 0,75u+570
    Fin du Pour

    Sortie

    Afficher u

    1. Quel est le rôle de cet algorithme ?

    2. Recopier et compléter le tableau suivant, par des valeurs exactes, en exécutant cet algorithme « pas à pas » pour N=3 :

      Variables Initialisation Etape 1 Etape 2 Etape 3
      u 750

      Au regard des recommandations de l'agence régionale de santé, au bout de combien de jours la piscine peut-elle être ouverte ?

    3. Calculer une valeur approchée à 10-3 près de la quantité de chlore le 15ième jour juste après l'ajout de chlore.

partie b

Au fil du temps, la quantité de chlore évolue. On note dn l'écart de quantité de chlore d'un jour à l'autre en grammes. Pour tout entier naturel n, on a dn=un+1-un.

    1. Calculer d0, d1 et d2. On donnera une valeur exacte.

    2. Justifier que d0, d1 et d2 semblent être les termes d'une suite géométrique.

  1. Vérifier que un+1-un=-0,25un+570.

  2. On admet que pour tout entier naturel n, on a dn+1=0,75dn.

    1. Justifier que dn=382,5×0,75n.

    2. En déduire que pour tout entier naturel n, on a un=2280-1530×0,75n.

    3. Déterminer la limite de la suite un. Interpréter le résultat trouvé.


exercice 3 ( 4 points )

Quand l'oreille humaine est soumise à une intensité acoustique, exprimée en watts par mètre carré (W/m2), le niveau sonore du bruit responsable de cette intensité acoustique est exprimé en décibels (dB).

Document

Échelle de bruit

Sources sonoresIntensité acoustique (W/m2)Niveau sonore (dB) arrondi éventuellement à l'unité Sensation auditive
Décollage de la Fusée Ariane106180 Exige une protection spéciale
Turboréacteur102140
Course de Formule 1 10 130
Avion au décollage 1 120 Seuil de douleur
Concert et discothèque10-1110 Très difficilement supportable
Baladeur à puissance maximum10-2100
Moto10-5 70 Pénible à entendre
Voiture au ralenti10-7 50 Bruit courant
Seuil d'audibilité10-12 0,08 Silence anormal
  1. D'après le tableau, lorsque l'intensité acoustique est multipliée par 10, quelle semble être l'augmentation du niveau sonore ?

  2. La relation liant l'intensité acoustique xx appartient à l'intervalle 10-12106 et le niveau sonore est donnée par : fx=10ln10×lnx+120.
    On pourra prendre 10ln104,34.

    1. Vérifier la conjecture émise à la question 1.

    2. Quel serait le niveau sonore de deux motos ?

  3. Pour éviter tout risque sur la santé, le port d'un casque de protection acoustique est donc conseillé au delà de 85 dB.
    Déterminer l'intensité acoustique à partir de laquelle le port d'un tel casque est conseillé.


EXERCICE 4 ( 6 points )

Un pont levant enjambant un canal peu fréquenté est constitué d'un tablier qui, une fois relevé, permet le passage de bateaux de différentes tailles.

Courbe 1 : L'illustration svg n'est pas visible par votre navigateur. Courbe 1 : L'illustration svg n'est pas visible par votre navigateur.

Hauteur du tablier en position haute : 7 mètres
Longueur du tablier : 30 mètres
Temps de montée du tablier : 2 minutes
Temps en position haute du tablier (hors incident) : 8 minutes
Temps de descente du tablier : 2 minutes

partie a - Sur la route

Un automobiliste se présente devant le pont. Le tablier du pont est en position haute. On s'intéresse ici au temps d'attente D, exprimé en minutes, de l'automobiliste avant qu'il puisse franchir le canal, pont baissé (hors incident).

  1. Combien de temps l'automobiliste attend-il au minimum ? au maximum ?

  2. On admet que le temps d'attente, en minutes, de l'automobiliste pour franchir le pont est une variable aléatoire D qui suit la loi uniforme sur l'intervalle 210.
    Déterminer l'espérance ED de la variable aléatoire D et interpréter le résultat dans le contexte.

  3. Calculer la probabilité que le temps d'attente de l'automobiliste ne dépasse pas 5 minutes.

partie b - Sur l'eau

Dans cette partie les résultats demandés seront arrondis à 10-2 près.

Lorsqu'un bateau est passé, le tablier du pont revient en position basse. Le temps, exprimé en heures, avant que le bateau suivant se présente devant le pont est une variable aléatoire T qui suit la loi exponentielle de paramètre λ=0,05. Ce temps est appelé temps de latence.

  1. Déterminer l'espérance ET de la variable aléatoire T et interpréter le résultat dans le contexte.

  2. On considère la fonction f définie sur 0+ par fx=0,05e-0,05x.

    1. Montrer que la fonction F définie sur 0+ par Fx=-e-0,05x est une primitive de f.

    2. On rappelle que pour tout nombre réel t de 0+ , PTt=0tfxdx.
      Démontrer que PTt=1-e-0,05t.

    1. Calculer la probabilité que le temps de latence soit inférieur à une demi-journée, soit 12 heures.

    2. Calculer la probabilité que le temps de latence soit supérieur à un jour.

    3. Calculer P12T24.



Rechercher des exercices regoupés par thème


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.