Baccalauréat 2013 MATHÉMATIQUES Série ES-L

sujet annulé : France métropolitaine 2013

exercice 1 ( 4 points ) commun à tous les candidats

Cet exercice est un questionnaire à choix multiples (QCM). Pour chacune des questions posées, une seule des quatre réponses est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.
Une réponse exacte rapporte 1 point. Une réponse fausse, une réponse multiple ou l'absence de réponse ne rapportent ni n'enlèvent aucun point.

  1. Soit f une fonction définie et dérivable sur . Le tableau de variations de la fonction f est le suivant :

    x− ∞− 5− 17+
    f(x) fonction décroissante : l'illustration svg n'est pas visible par votre navigateur.

    − 4

    fonction croissante : l'illustration svg n'est pas visible par votre navigateur.

    1. L'intégrale 17f(x)dx est strictement positive.

    2. L'intégrale 17f(x)dx est strictement négative.

    3. L'intégrale 17f(x)dx est nulle.

    4. Le tableau de variations ne permet pas de connaître le signe de l'intégrale 17f(x)dx .

  2. Dans une ville de 23000 habitants, la municipalité souhaite connaître l'opinion de ses concitoyens sur la construction d'un nouveau complexe sportif. Afin de l'aider dans sa décision, la municipalité souhaite obtenir une estimation de la proportion de personnes favorables à la construction de ce complexe sportif, au niveau de confiance de 95 % avec un intervalle d'amplitude inférieure à 4 %.
    Le nombre minimum de personnes que la municipalité doit interroger est de :

     a.   625

     b.   2 500

     c.   920

     d.   874

  3. Soit f la fonction dérivable définie sur ]0;+[ par f(x)=2lnxx+1-4.
    Dans le plan muni d'un repère, la tangente à la courbe représentative de la fonction f au point d'abscisse 1 admet pour équation :

     a.   y=x+3

     b.   y=x-5

     c.   y=-x-3

     d.   y=2x-6

  4. On résout dans l'inéquation : lnx+ln2ln(3x-6).
    L'ensemble des solutions est :

     a.   ]2;6]

     b.   [6;+[

     c.   ]0;6]

     d.   ]0;4]


EXERCICE 2 ( 5 points ) candidats n'ayant pas suivi l'enseignement de spécialité ES

Un industriel étudie l'évolution de la production des jouets sur la machine VP1OOO de son entreprise. En 2000, lorsqu'il l'a achetée, elle pouvait produire 120 000 jouets par an.
Du fait de l'usure de la machine, la production diminue de 2 % par an.
On modélise le nombre total de jouets fabriqués au cours de l'année 2000 + n par une suite (Un) . On a donc U0=120 000 .

  1. Montrer que, pour tout entier naturel n, Un=120 000×0,98n .

    1. Quel a été le nombre de jouets fabriqués en 2005 ?

    2. Déterminer à partir de quelle année, le nombre de jouets fabriqués sera strictement inférieur à 100 000.

    3. Cet industriel décide qu'il changera la machine lorsqu'elle produira moins de 90 000 jouets par an.
      Recopier et compléter les lignes 8 et 9 de l'algorithme ci-dessous afin qu'il permette de déterminer le plus petit entier naturel n tel que Un<90 000 .

      1Variables :A est un réel
      2 n est un entier naturel
      3
      4 Initialisation : Affecter à A la valeur 120 000
      5 Affecter à n la valeur 0
      6
      7 Traitement : Tant que A90 0000
      8n prend la valeur …
      9
      10Fin Tant que
      11
      12 Sortie :Afficher n
    1. Exprimer 1+0,98+0,982++0,98n en fonction de n.

    2. On pose Sn=U0+U1++Un . Montrer que Sn=6 000 000×(1-0,98n+1) .

    3. En déduire le nombre total de jouets fabriqués pendant les 15 premières années de production.


EXERCICE 2 ( 5 points ) candidats ayant suivi l'enseignement de spécialité ES

Dans une entreprise, la société de débit boisson CAFTHÉ installe deux machines : l'une ne sert que du café et l'autre ne sert que du thé.
Chaque jour lors de la pause déjeuner, chaque employé de l'entreprise choisit une boisson, et une seule : café ou thé. On suppose que le nombre total d'employés de l'entreprise reste constant au cours du temps.

La société CAFTHÉ pense que la machine à café sera toujours la plus utilisée. Une enquête, effectuée sur plusieurs jours, auprès des employés pour connaitre leurs choix de boisson a montré que :

On admet que cette tendance se poursuit les jours suivants.

Le premier jour, 70 % des employés ont choisi un café.
On note C l'état « L'employé choisit un café » et T l'état « L'employé choisit un thé ».
Pour tout entier naturel n non nul, on note :

  1. Traduire les données de l'énoncé par un graphe probabiliste de sommets C et T.

  2. Déterminer la matrice P1 donnant l'état probabiliste le premier jour.

  3. La matrice de transition M de ce graphe, en considérant les sommets dans l'ordre C et T est M=(0,970,030,020,98) .
    Déterminer la probabilité, arrondie au centième, qu'un employé choisisse un thé le quatrième jour.

    1. Montrer que l'état stable est (0,40,6) .

    2. Est-ce que la société CAFTHÉ avait raison quant à l'utilisation de la machine à café à long terme ?

    1. Exprimer Pn+1 en fonction de Pn .
      En déduire que pour tout entier n, on a cn+1=0,95×cn+0,02 .

    2. On considère l'algorithme suivant :

      Variables :

      A est un réel
      i et n sont des entiers naturels

      Entrée :

      Saisir n

      Initialisation :

      Affecter à A la Valeur 0,70

      Traitement :

      Pour i de 1 à n
      Affecter à A la valeur 0,95 × A + 0,02
      Fin Pour

      Sortie :

      Afficher A.

      En faisant apparaître les différentes étapes, donner la valeur affichée par cet algorithme lorsque la valeur de n est égale à 3.
      Que permet de déterminer cet algorithme ?


exercice 3 ( 5 points ) commun à tous les candidats

Dans cet exercice, sauf indication contraire, les résultats seront donnés sous forme décimale, arrondis éventuellement au millième.
Les parties A et B sont indépendantes.

On s'intéresse à une entreprise chargée de mettre du lait en bouteilles.

partie a : Étude du processus de mise en bouteille

La bouteille vide arrive sur un tapis roulant et passe successivement dans 2 machines M1 et M2 . La machine M1 remplit la bouteille de lait et la machine M2 met le bouchon.
Une étude statistique portant sur un grand nombre de bouteilles de lait à la fin de la chaîne a permis d'établir que 5 % des bouteilles ne sont pas correctement remplies et que parmi elles 8 % ont un bouchon. D'autre part, 4 % des bouteilles correctement remplies n'ont pas de bouchon.

On choisit une bouteille de lait au hasard à la fin de la chaîne et on note :

Rappel des notations :

Si A et B sont deux évènements donnés, P(A) désigne la probabilité que l'évènement A se réalise et PB(A) désigne la probabilité de l'évènement A sachant que l'évènement B est réalisé.
A¯ désigne l'évènement contraire de l'évènement A.

  1. Traduire l'énoncé à l'aide d'un arbre pondéré.

  2. Déterminer la probabilité que la bouteille soit correctement remplie et qu'elle ait un bouchon.

  3. Montrer que la probabilité que la bouteille ait un bouchon est égale à 0,916.

  4. Sachant que la bouteille a un bouchon, déterminer la probabilité qu'elle soit correctement remplie.

partie b : Production journalière

Une étude sur les dix premières années a montré que la production journalière de bouteilles de lait dans cette entreprise peut être modélisée par une variable aléatoire X qui suit la loi normale de moyenne 2000 et d'écart type 200.

  1. Calculer la probabilité que la production journalière soit comprise entre 1800 et 2200 bouteilles.

  2. Le service maintenance doit intervenir sur les machines si la production journalière devient inférieure à 1600 bouteilles. Déterminer la probabilité que le service maintenance intervienne sur les machines.

rappel :

Si X est une variable aléatoire qui suit la loi normale 𝒩(μ;σ2) alors :


exercice 4 ( 6 points ) commun à tous les candidats

Dans un laboratoire, des scientifiques ont étudié pendant 10 ans l'effet de la pollution sur une population d'insectes car ils craignaient l'extinction de cette espèce.
L'étude a été effectuée sur un échantillon de 25000 insectes.

Les deux parties peuvent être traitées indépendamment l'une de l'autre.

partie a :

Une étude a permis de montrer que la population d'insectes diminue très rapidement lors des quatre premières années. La population peut être modélisée par la fonction f définie sur l'intervalle [0;4] par f(t)=25e-0,5t , où t est le temps exprimé en années et f(t) le nombre de milliers d'insectes.

  1. Calculer le pourcentage de diminution du nombre d'insectes la première année. Arrondir à 1 %.

    1. Montrer que la fonction F définie sur l'intervalle [0;4] par F(t)=-50e-0,5t est une primitive de la fonction f sur l'intervalle [0;4] .

    2. Calculer la valeur exacte de 2425e-0,5tdt .

    3. En déduire la population moyenne d'insectes entre le début de la deuxième et le début de la quatrième année.

partie b :

Après de longues recherches, un biologiste a mis au point un traitement pour essayer de sauver cette espèce. Ce traitement est administré aux insectes à partir de la quatrième année.
L'évolution de la population est alors modélisée par la fonction g définie sur l'intervalle [4;10] par : g(t)=20e-0,1t2+t-4,65 .

  1. On désigne par g la fonction dérivée de la fonction g.
    Montrer que pour tout réel t de l'intervalle [4;10] , g(t)=-4te-0,1t2+1 .

  2. On admet que la fonction g est continue et strictement croissante sur l'intervalle [4;10] .
    Montrer que l'équation g(t)=0 a une solution et une seule α dans l'intervalle [4;10] .
    Donner la valeur arrondie au dixième de α.

    1. En déduire le signe de g(t) sur l'intervalle [4;10] .

    2. Donner le sens de variation de la fonction g sur l'intervalle [4;10] .

    3. Que peut-on supposer quant à l'effet du traitement sur la population d'insectes ?



Télécharger le sujet :

  LaTeX      |      Pdf    


Rechercher des exercices regoupés par thème


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.