Droites asymptotes

Q.C.M. interactif

Pour chacune des questions de ce QCM, une seule des propositions est exacte. Vous pouvez répondre de manière interactive.
Une réponse exacte rapporte 1 point. Une réponse inexacte enlève 0,5 point. L'absence de réponse n'apporte ni n'enlève aucun point. Si le total est négatif, la note est ramenée à 0.

  1. Si f est une fonction définie sur ]-;3[ et telle que limx-f(x)=3 et limx3-f(x) =2 alors sa courbe représentative 𝒞f

     admet une seule asymptote la droite d'équation y=3.

     admet une seule asymptote la droite d'équation x=3.

     admet deux asymptotes la droite d'équation y=3 et la droite d'équation y=2.

  2. Si f est une fonction définie sur ]-;3[ et telle que limx-f(x)=+ et limx3-f(x)=+ alors sa courbe représentative 𝒞f

     admet au moins une asymptote de coefficient directeur 3.

     admet au moins une asymptote de coefficient directeur 0.

     admet au moins une asymptote n'ayant pas de coefficient directeur.

  3. Si f est une fonction définie sur et telle que limx+f(x)-x=2 alors sa courbe représentative 𝒞f

     admet pour asymptote la droite d'équation y=2.

     admet pour asymptote la droite d'équation x=2..

     admet pour asymptote la droite d'équation y=x+2.

  4. La courbe représentative 𝒞f d'une fonction f admet pour asymptote la droite d'équation y=-2x+1 en +. Alors,

     limx+f(x)=0.

     limx+f(x)=+.

     limx+f(x)=-.

  5. La courbe représentative 𝒞f de la fonction f définie sur ]-2;+[ par f(x)= 3x+5x+2 -x , possède

     une asymptote d'équation y=x+2 et une asymptote d'équation y=3x+5

     une asymptote d'équation x=-2 et une asymptote d'équation y=3-x.

     une asymptote d'équation x=-2 et une asymptote d'équation y=2x+5.

  6. La courbe représentative 𝒞f de la fonction f définie sur ]0;+[ par f(x)=xln(x)-x

     possède une asymptote verticale d'équation x=0.

     possède une asymptote horizontale d'équation y=0.

     n'a pas d'asymptote.


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.