Baccalauréat session 2010 MATHÉMATIQUES Série ES

sujet: Nouvelle Calédonie mars 2011

exercice 1 ( 5 points ) candidats n'ayant pas suivi l'enseignement de spécialité

Lors d'un sondage organisé dans différents pays de l'Union Européenne sur une population comportant 52% de femmes et 48% d'hommes, on a posé la question suivante : «Qu'est-ce qui renforcerait le plus votre sentiment d'être un citoyen européen ? »
31% des femmes interrogées et 34% des hommes interrogés ont répondu qu'un système européen de protection sociale serait l'élément qui renforcerait le plus leur sentiment d'être un citoyen européen.
(Source : « le futur de l'Europe », Commission Européenne, sondage réalisé en mars 2006)

On prélève au hasard la réponse d'une personne prise au hasard parmi les réponses des personnes interrogées lors de ce sondage.
On appelle :

  1. Dessiner un arbre pondéré traduisant la situation.

  2. Calculer la probabilité qu'une réponse du sondage soit celle d'un homme souhaitant avoir un système de protection social européen. On donnera la valeur exacte.

  3. Montrer que la probabilité de l'évènement S est 0,3244.

  4. Sachant que la personne souhaite avoir un système de protection social européen, calculer la probabilité, arrondie au millième, que ce soit une femme.

  5. On choisit au hasard trois réponses de ce sondage.
    On admet que le nombre de réponses est suffisamment grand pour assimiler le choix de trois réponses à des tirages successifs indépendants avec remise.

    Déterminer la probabilité qu'au moins deux des trois réponses soient « avoir un système de protection social européen ». On arrondira le résultat au millième.


exercice 2 ( 3 points ) commun à tous les candidats

Cet exercice est un QCM (Questionnaire à Choix Multiples). Pour chacune des questions, une seule des réponses a, b ou c est exacte. Le candidat indiquera sur sa copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.
Barème : une bonne réponse rapporte 1 point. Une mauvaise réponse enlève 0,25 point. L'absence de réponse ne rapporte et n'enlève aucun point. Si le total des points est négatif, la note globale attribuée à l'exercice est ramenée à 0.


Soit f la fonction définie pour tout réel x appartenant à -125 par fx=-x+2+ln2x+1 et soit C sa courbe représentative dans le plan muni d'un repère orthonormal.

  1. C admet une tangente horizontale au point :

     a)  A1232+ln2

     b)  B02

     c)  C1212+ln2

  2. La limite de f en -12 est égale à :

     a)  52

     b)  -

     c)  +

  3. Le nombre de solutions de l'équation fx=0 dans l'intervalle -125 est égal à  :

     a)  0

     b)  1

     c)  2


exercice 3 ( 5 points ) commun à tous les candidats

Le tableau ci-dessous donne le nombre de clients ayant fréquenté un restaurant donné pour la période 2000 - 2005. Chaque année est remplacée par son rang xi et le nombre de clients correspondant yi est donné en centaines.

Année 200020012002200320042005
Rang de l'année xi012345
Nombre yi51,550494847,547

Le graphique ci-dessous donne le nuage de points xiyi avec i compris entre 0 et 5.

Nuage de points : L'illustration svg n'est pas visible par votre navigateur.

partie a

  1. Déterminer à l'aide de la calculatrice l'équation y=ax+b de la droite D d'ajustement de y en x par la méthode des moindres carrés.
    Les coefficients a et b seront arrondis au centième. Aucune justification n'est demandée.

  2. Tracer la droite D dans le repère de l'annexe 1.

  3. En utilisant ce modèle, quel nombre de clients pouvait-on prévoir pour les années 2006 et 2007 ?

partie b

Une étude plus récente a permis d'obtenir le nombre de clients pour la période 2006 - 2009. Ces résultats sont donnés dans le tableau suivant :

Année 2006200720082009
Rang de l'année xi6789
Nombre yi4747,247,547,9
    1. À l'aide de ces valeurs compléter le nuage de points de coordonnées xiyi de la série statistique sur le document de l'annexe 1.

    2. Le modèle d'ajustement trouvé dans la partie A vous paraît-il pertinent pour la période 2006 -2009 ? Justifier la réponse.

  1. On considère la fonction f définie sur 09 par fx=2x+15+e-0,1x+3,6.

    On choisit un nouveau modèle d'évolution : on prend le nombre fx comme estimation du nombre de centaines de clients de ce restaurant au cours de l'année 2000 + x.

    1. Calculer f7. Le choix de ce modèle d'évolution semble-t-il pertinent pour l'année 2007 ?

    2. D'après ce modèle d'évolution, à combien peut-on estimer le nombre de clients qui fréquenteront le restaurant en 2010 ? (On donnera le résultat arrondi à la centaine de clients).


exercice 4 ( 7 points ) commun à tous les candidats

L'entreprise CoTon produit du tissu en coton. Celui-ci est fabriqué en 1 mètre de large et pour une longueur x exprimée en kilomètre, x étant compris entre 0 et 10.
Le coût total de production en euros de l'entreprise CoTon est donné en fonction de la longueur x par la formule Cx=15x3-120x2+500x+750 Le graphique de l'annexe 2 donne la représentation graphique de la fonction C.

Les deux parties A et B de cet exercice sont indépendantes.

partie a : Étude du bénéfice

Si le marché offre un prix p en euros pour un kilomètre de ce tissu, alors la recette de l'entreprise CoTon pour la vente d'une quantité x est égal à Rx=px.

  1. Tracer sur le graphique de l'annexe 2 la droite D1 d'équation y=400x.
    Expliquer, au vu de ce tracé, pourquoi l'entreprise CoTon ne peut pas réaliser un bénéfice si le prix p du marché est égal à 400 euros.

  2. Dans cette question on suppose que le prix du marché est égal à 680 euros.

    1. Tracer sur le graphique de l'annexe 2 la droite D2 d'équation y=680x.
      Déterminer graphiquement, avec la précision permise par le graphique, pour quelles quantités produites et vendues, l'entreprise CoTon réalise un bénéfice si le prix p du marché est de 680 euros.

    2. On considère la fonction B définie sur l'intervalle 010 par Bx=680x-Cx

      Démontrer que pour tout x appartenant à l'intervalle 010 on a Bx=-45x2+240x+180.

    3. Étudier les variations de la fonction B sur 010.
      En déduire pour quelle quantité produite et vendue le bénéfice réalisé par l'entreprise CoTon est maximum. Donner la valeur de ce bénéfice.

partie b : Étude du coût moyen

On rappelle que le coût moyen de production CM mesure le coût par unité produite.
On considère la fonction CM définie sur l'intervalle 010 par CMx=Cxx.

  1. Démontrer que pour tout x appartenant à l'intervalle 010 on a CMx=30x-5x2+x+5x2.

    1. Démontrer que pour tout x appartenant à l'intervalle 010, CMx est du signe de x-5.
      En déduire les variations de la fonction CM sur l'intervalle 010.

    2. Pour quelle quantité de tissu produite le coût moyen de production est-il minimum ?
      Que valent dans ce cas le coût moyen de production et le coût total ?

annexe 2

Courbe représentative de la fonction coût total : L'illustration svg n'est pas visible par votre navigateur.


Télécharger le sujet au format Word


Rechercher des exercices regoupés par thème      

[ Accueil ]

L'affichage recommandé pour une meilleure lisibilité est de 1280 × 1024.

math@es

✉ A.Yallouz

Powered by MathJax