Baccalauréat 2013 MATHÉMATIQUES Série ES

sujet : Nouvelle Calédonie mars 2014

correction de l'exercice 1 : commun à tous les candidats

Une classe est composée de 17 filles dont 8 étudient le russe et 9 l'allemand et de 23 garçons dont 12 étudient le russe et 11 l'allemand.
Chaque élève étudie une et une seule de ces deux langues vivantes.

On choisit un élève au hasard dans la classe et on définit les évènements :

  • F l'évènement : « L'élève choisi est une fille » ;
  • G l'évènement : « L'élève choisi est un garçon » ;
  • R l'évènement : « L'élève choisi étudie le russe » ;
  • A l'évènement : « L'élève choisi étudie l'allemand ».

Rappel des notations :

Si X et Y sont deux évènements, PX désigne la probabilité que l'évènement X se réalise et PYX désigne la probabilité que l'évènement X se réalise sachant que l'évènement Y est réalisé.
X¯ désigne l'évènement contraire de l'évènement X.

Chaque résultat sera exprimé sous forme décimale exacte ou sous la forme d'une fraction irréductible.
On pourra utiliser un tableau ou un arbre.

  1. Calculer PG, PRG et PR.

    Récapitulons les données de l'énoncé à l'aide d'un tableau à double entrée :

    FGTotaux
    R81220
    A91120
    Totaux172340

    Les résultats de l'expérience aléatoire « choisir un élève au hasard dans la classe » sont équiprobables d'où :

    PG=2340=0,575, PRG=1240=310=0,3 et PR=2040=12=0,5.


  2. Quelle est la probabilité que l'élève choisi soit une fille qui étudie l'allemand ?

    PFA=940=0,225

    La probabilité que l'élève choisi soit une fille qui étudie l'allemand est égale à 0,225.


  3. L'élève choisi étudie le russe. Calculer la probabilité que cet élève soit un garçon.

    PRG=PRGPR. Soit PRG=0,30,5=0,6

    La probabilité de choisir un garçon parmi les élèves qui étudient le russe est égale à 0,6.


  4. On procède successivement deux fois au choix d'un élève de la classe. Le même élève peut être choisi deux fois.
    Calculer la probabilité de l'évènement: « Les deux élèves choisis n'étudient pas la même langue ».

    Le même élève pouvant être choisi deux fois, il s'agit de la répétition deux expériences aléatoires identiques et indépendantes modélisée par l'arbre pondéré ci dessous :

    Arbre pondéré : L'illustration svg n'est pas visible par votre navigateur.

    la probabilité p de l'évènement: « Les deux élèves choisis n'étudient pas la même langue » est :p=PRA+PAR=0,5×0,5+0,5×0,5=0,5

    La probabilité que les deux élèves choisis n'étudient pas la même langue est égale à 0,5.



Rechercher des exercices regoupés par thème


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.