Baccalauréat 2013 MATHÉMATIQUES Série ES

sujet : Nouvelle Calédonie mars 2014

exercice 1 ( 5 points ) commun à tous les candidats

Une classe est composée de 17 filles dont 8 étudient le russe et 9 l'allemand et de 23 garçons dont 12 étudient le russe et 11 l'allemand.
Chaque élève étudie une et une seule de ces deux langues vivantes.

On choisit un élève au hasard dans la classe et on définit les évènements :

Rappel des notations :

Si X et Y sont deux évènements, PX désigne la probabilité que l'évènement X se réalise et PYX désigne la probabilité que l'évènement X se réalise sachant que l'évènement Y est réalisé.
X¯ désigne l'évènement contraire de l'évènement X.

Chaque résultat sera exprimé sous forme décimale exacte ou sous la forme d'une fraction irréductible.
On pourra utiliser un tableau ou un arbre.

  1. Calculer PG, PRG et PR.

  2. Quelle est la probabilité que l'élève choisi soit une fille qui étudie l'allemand ?

  3. L'élève choisi étudie le russe. Calculer la probabilité que cet élève soit un garçon.

  4. On procède successivement deux fois au choix d'un élève de la classe. Le même élève peut être choisi deux fois.
    Calculer la probabilité de l'évènement: « Les deux élèves choisis n'étudient pas la même langue ».


exercice 2 ( 5 points ) candidats n'ayant pas suivi l'enseignement de spécialité

On a observé l'évolution des inscriptions dans le club de gymnastique d'une ville.

Chaque année, 30 % des personnes inscrites au club de gymnastique l'année précédente renouvellent leur inscription au club.
De plus, chaque année, 10 % des habitants de la ville qui n'étaient pas inscrits au club l'année précédente s'y inscrivent.

On appelle n le nombre d'années d'existence du club.
On note gn la proportion de la population de la ville inscrite au club de gymnastique lors de l'année n et pn la proportion de la population qui n'est pas inscrite.
La première année de fonctionnement du club (année « zéro »), 20 % des habitants de la ville se sont inscrits. On a donc g0=0,2.

  1. Soit n un entier naturel. Que vaut la somme gn+pn ?

    1. Justifier que, pour tout entier naturel n, gn+1=0,3gn+0,1pn.

    2. En déduire que, pour tout entier naturel n, gn+1=0,2gn+0,1.

  2. Pour tout entier naturel n, on pose un=gn-0,125.
    Montrer que la suite un est une suite géométrique dont on précisera la raison et le premier terme.

  3. Déterminer le sens de variation de la suite un.

  4. Montrer que pour tout entier n, gn=0,125+0,075×0,2n.
    Comment la proportion de la population de la ville inscrite au club de gymnastique évolue-t-elle au cours des années ?


exercice 2 ( 5 points ) candidats ayant suivi l'enseignement de spécialité

On a observé l'évolution des inscriptions dans le club de gymnastique d'une ville.

Chaque année, 30 % des personnes inscrites au club de gymnastique l'année précédente renouvellent leur inscription au club.
De plus, chaque année, 10 % des habitants de la ville qui n'étaient pas inscrits au club l'année précédente s'y inscrivent.

On appelle n le nombre d'années d'existence du club.
On note gn la proportion de la population de la ville inscrite au club de gymnastique lors de l'année n et pn la proportion de la population qui n'est pas inscrite.
La première année de fonctionnement du club (année « zéro »), 20 % des habitants de la ville se sont inscrits.
On note En=gnpn la matrice traduisant l'état probabiliste de l'année n. On a donc E0=0,20,8.

  1. Traduire les données de l'énoncé par un graphe probabiliste.

  2. On nomme A la matrice de transition associée à cette situation, c'est-à-dire la matrice vérifiant : pour tout entier naturel n, En+1=En×A.
    Donner la matrice A.

  3. Déterminer E1 et E2. Interpréter les résultats.

  4. Déterminer l'état probabiliste stable (on donnera les coefficients de la matrice ligne sous la forme de fractions irréductibles).
    Comment peut-on interpréter ce résultat ?


exercice 3 ( 4 points ) commun à tous les candidats

Pour chacune des affirmations ci-dessous, indiquer si elle est vraie ou fausse et justifier la réponse.

  1. La fonction G définie sur l'intervalle 0+ par Gx=xlnx-x+10 est une primitive de la fonction g définie sur l'intervalle 0+ par gx=lnx.

  2. On a l'égalité : 01x2+1dx=13.

  3. Soit X une variable aléatoire suivant la loi uniforme sur l'intervalle 01.
    On a alors : EX=1.

  4. Dans une population, la proportion de garçons à la naissance est p=0,51.
    L'intervalle de fluctuation asymptotique au seuil de 95 % de la proportion de garçons dans un échantillon de taille 100 est (en arrondissant les bornes à 0,001 près) : 0,4120,608.


exercice 4 ( 6 points ) commun à tous les candidats

Soit f la fonction définie sur l'intervalle 25 par fx=3-xex+1, soit f sa fonction dérivée et soit f sa fonction dérivée seconde.

  1. Montrer que, pour tout nombre réel x appartenant à l'intervalle 25, fx=2-xex et fx=1-xex

  2. Étudier les variations de la fonction f sur l'intervalle 25.

  3. Justifier que l'équation fx=0 admet une unique solution α dans l'intervalle 25.
    Montrer que : 3<α<4.

    1. Soit T la tangente à la courbe représentative de la fonction f au point d'abscisse 3.
      Montrer que T a pour équation y=-e3x+3e3+1

    2. Déterminer les coordonnées du point d'intersection de la droite T et de l'axe des abscisses.

    3. Étudier le signe de fx sur l'intervalle 25 et en déduire la convexité ou la concavité de f sur cet intervalle.

    4. En déduire que : α<3+1e3.
      On a donc : 3<α<3+1e3<3,05.

  4. On considère l'algorithme suivant :

    Variables :

    a, b, m et r sont des nombres réels

    Initialisation :Affecter à a la valeur 3
    Affecter à b la valeur 3,05

    Entrée :

    Saisir r
    Traitement :TANT QUE b-a>r
    Affecter à m la valeur a+b2
    SI fm>0
    • ALORS Affecter à a la valeur m
    • SINON Affecter à b la valeur m
    FIN SI
    FIN TANT QUE
    Sortie :Afficher a
    Afficher b
    1. Faire fonctionner l'algorithme précédant avec r=0,01 en recopiant et complétant le tableau ci-dessous. On arrondira au millième les valeurs de fm.

      b-ab-a>rmfmfm>0ab
      Initialisation33,05
      étape 10,05oui3,0250,485oui3,0253,05
      étape 2
      étape 3
    2. Interpréter les résultats trouvés pour a et b à la fin de l'étape 3.



Rechercher des exercices regoupés par thème      

[ Accueil ]

L'affichage recommandé pour une meilleure lisibilité est de 1280 × 1024.

math@es

✉ A.Yallouz

Powered by MathJax