Baccalauréat novembre 2008 MATHÉMATIQUES Série ES

sujet: amérique du sud

exercice 1 ( 4 points ) commun à tous les candidats

Pour chacune des questions, une seule des réponses A, B ou C est exacte. Indiquer sur la copie le numéro de la question et la lettre correspondant à la réponse choisie. Aucune justification n'est demandée.

Barème : pour chaque question, une réponse exacte rapporte 1 point ; une réponse inexacte enlève 0,25 point ; l'absence de réponse n'apporte, ni n'enlève de point. Si la somme des points de cet exercice est négative, la note est ramenée à 0.

Les deux parties sont indépendantes


première partie

Dans cette partie, on considère la courbe représentative d'une fonction f définie et dérivable sur l'intervalle -15 (voir ci-dessous). On note f la dérivée de la fonction f.

Courbe représentative de la fonction f : L'illustration svg n'est pas visible par votre navigateur.
  1. On peut affirmer que

     réponse A : f4,5=0

     réponse B : f3=0

     réponse C : f3=4,5

  2. Soit F une primitive sur l'intervalle -15 de la fonctionf. Alors :

     réponse A : F est décroissante sur l'intervalle 34,5

     réponse B : F présente un minimum en x=0

     réponse C : F présente un maximum en x=4,5

deuxième partie

On considère la fonction h définie sur l'intervalle --13 par hx=9+ln3x+1x-2

  1. Dans un repère orthogonal du plan, la courbe représentative de la fonction h admet pour asymptote la droite d'équation

     réponse A : y=9

     réponse B : y=-13

     réponse C : y=9+ln3

  2. Parmi les expressions suivantes de hx, l'une d'elles est fausse, laquelle ?

     réponse A : hx=9+ln3x+1-lnx-2

     réponse B : hx=9+ln3+7x-2

     réponse C : hx=9-lnx-23x+1


exercice 2 ( 5 points ) candidats n'ayant pas suivi l'enseignement de spécialité

Suite à une panne technique, un distributeur de boissons ne tient aucun compte de la commande faite par le client. Cette machine distribue soit un expresso, soit du chocolat, soit du thé en suivant une programmation erronée. Chaque boisson peut être sucrée ou non.

On pourra considérer les évènements suivants :

  1. Construire un arbre probabiliste modélisant la situation.

  2. Calculer la probabilité d'obtenir un expresso sucré.

  3. Démontrer que la probabilité d'obtenir un chocolat sucré est 118

  4. En déduire la probabilité d'obtenir un chocolat.

  5. Une personne obtient une boisson sucrée. Quelle est la probabilité que cette boisson soit un thé ?


exercice 2 ( 5 points ) candidats ayant suivi l'enseignement de spécialité

partie a

Laurent s'occupe de distribuer le courrier dans les bureaux d'une grande entreprise.

Le graphe ci-dessous représente les différents parcours qu'il peut faire pour distribuer le courrier dans les bureaux A, B, C, D, E, F et G. Le poids de chaque arête indique le nombre d'obstacles (portes, escaliers, machines à café…) qui nuisent à la distribution du courrier.

Graphe : L'illustration svg n'est pas visible par votre navigateur.

Laurent se voit confier par le bureau A un colis à livrer au bureau G. Indiquer un parcours qui permette à Laurent de partir du bureau A pour arriver au bureau G en rencontrant le minimum d'obstacles.

partie b

Pris par le temps, il n'est pas rare de voir Laurent oublier de livrer le courrier du matin !
On considère que :

Le lundi matin 1er octobre, Laurent a bien distribué le courrier. On note an la probabilité que Laurent distribue le courrier le n-ième jour de travail (on considère donc que le lundi 1er octobre est le premier jour et que a1=1).

  1. Traduire les données de cet exercice à l'aide d'un graphe probabiliste. Préciser la matrice de transition associée à ce graphe.

  2. Démontrer que, pour tout n1, on a : an+1=0,5an+0,2.

  3. On considère la suite un définie, pour tout n1, par un=an-0,4.

    1. Démontrer que la suite un est une suite géométrique de raison 0,5. Calculer son premier terme.

    2. En déduire, pour tout n1, la valeur de an en fonction de n.


exercice 3 ( 5 points ) commun à tous les candidats

Depuis 1997, une collectivité territoriale s'intéresse à la quantité annuelle de déchets recyclés, en particulier l'aluminium. En 2008, cette collectivité dispose des données suivantes :

Année19971999200120032005
Rang de l'année xi02468
Aluminium recyclé (en tonnes) yi300850110013501400

  1. On a représenté ci-dessous le nuage de points associé à la série statistique xiyi dans un repère orthogonal du plan.

    Nuage de points : L'illustration svg n'est pas visible par votre navigateur.
    1. À l'aide de la calculatrice, donner une équation de la droite d'ajustement affine de y en x, obtenue par la méthode des moindres carrés.

    2. À l'aide de cet ajustement, estimer la quantité d'aluminium qui sera recyclée en 2008.

  2. Un responsable affirme que l'augmentation annuelle moyenne entre 2003 et 2005 a été d'environ 1,8 %.

    1. Justifier ce taux de 1,8 %.

    2. En utilisant ce taux, estimer, à une tonne près, la quantité d'aluminium qui sera recyclée en 2008.

    3. Avec cette méthode, en quelle année peut-on estimer que plus de 1 600 tonnes d'aluminium seront recyclées ?

  3. Dans cette question, toute trace de recherche, même incomplète ou d'initiative, même non fructueuse, sera prise en compte dans l'évaluation.

    En janvier 2008 sont publiés les résultats de l'année 2007. La quantité d'aluminium recyclé en 2007 est de 1 500 tonnes. Lorsque ce résultat paraît, une réunion des responsables de la collectivité est organisée pour ajuster les prévisions. Lequel des deux modèles précédents semble-t-il le plus adapté ?


exercice 4 ( 6 points ) commun à tous les candidats

partie a

On considère la fonction f définie sur l'intervalle 0+ par fx=8x+6e-0,8x.

On admet que la dérivée f de f est donnée pour tout x de l'intervalle 0+ par fx=-6,4x+3,2e-0,8x.

  1. Déterminer la limite de la fonction f en + ∞. Donner une interprétation graphique de cette limite.

  2. Étudier le sens de variation de la fonction f sur l'intervalle 0+. Dresser son tableau de variation.

  3. Montrer que l'équation fx=1 admet une unique solution α sur l'intervalle 0+ et donner un encadrement de α d'amplitude 10− 1

  4. Vérifier que la fonction F définie sur l'intervalle 0+ par Fx=-10x+2e-0,8x est une primitive de la fonction f.

partie b

Dans cette partie, toute trace de recherche, même incomplète ou d'initiative même non fructueuse, sera prise en compte dans l'évaluation.

L'objet de cette partie est d'étudier les ventes d'un nouveau baladeur numérique. On considère que le nombre de baladeurs numériques vendus par un fabricant à partir du début des ventes jusqu'au temps t est donné par Bt=0tfxdx Le temps t est exprimé en année, le début des ventes (correspondant à t=0) étant le 1er janvier 2000. Le nombre de baladeurs numériques est exprimé en centaines de milliers.
À l'aide de la partie A, décrire l'évolution du rythme des ventes au cours des années.
En quelle année le nombre de baladeurs vendus dans le courant de l'année est-il devenu inférieur à 100 000 ?



Télécharger le sujet au format Word

Rechercher des exercices regoupés par thème      

[ Accueil ]

L'affichage recommandé pour une meilleure lisibilité est de 1280 × 1024.

math@es

✉ A.Yallouz

Powered by MathJax