Baccalauréat 2008 MATHÉMATIQUES Série ES

sujet: Pondichery

exercice 1 ( 4 points ) commun à tous les candidats

Cet exercice est un questionnaire à choix multiples. Pour chacune des quatre questions, quatre réponses sont proposées ; une seule de ces réponses convient. Indiquer sur la copie le numéro de la question et recopier la réponse exacte sans justifier le choix effectué.

Barème : Une réponse exacte rapporte 1 point. Une réponse inexacte ou l'absence de réponse n'apporte ni n'enlève aucun point.

  1. Le prix d'un produit dérivé du pétrole a augmenté de 60 % durant l'année 2005. Pour revenir à sa valeur initiale, ce prix doit baisser de :

    • 70 %.
    • 60 %.
    • 40 %.
    • 37,5 %.
  2. Lors d'une expérience aléatoire, on considère deux évènements indépendants A et B qui vérifient PA=0,3 et PB=0,5. On a alors :

    • PAB=0,65.
    • PAB=0,8.
    • PAB=0,15.
    • Les données ne permettent pas de calculer PAB.
  3. f est la fonction définie sur l'intervalle 0+ par fx=2x-1+1x.
    La courbe représentative de la fonction f dans un repère orthonormal du plan admet pour asymptote la droite d'équation :

    • y=0.
    • y=2x-1.
    • x=2.
    • y=-x+1.
  4. Le nombre A=2lne4+5ln2+ln8e est égal à :

    • 1+4ln2.
    • 4ln2+3.
    • 2ln5+1.
    • 8ln2.

EXERCICE 2 ( 5 points ) candidats n'ayant pas suivi l'enseignement de spécialité

Une agence de voyages propose exclusivement trois destinations : la destination A, la destination G et la destination M.
50 % des clients choisissent la destination A ;
30 % des clients choisissent la destination G;
20 % des clients choisissent la destination M.

Au retour de leur voyage, tous les clients de l'agence répondent à une enquête de satisfaction. Le dépouillement des réponses à ce questionnaire permet de dire que 90 % des clients ayant choisi la destination M sont satisfaits, de même que 80 % des clients ayant choisi la destination G.

On prélève au hasard un questionnaire dans la pile des questionnaires recueillis.
On note les évènements :

  1. Traduire les données de l'énoncé sur un arbre de probabilité.

    1. Traduire par une phrase les évènements GS et MS puis calculer les probabilités PGS et PMS.

    2. L'enquête montre que 72 % des clients de l'agence sont satisfaits. En utilisant la formule des probabilités totales, calculer PAS.

    3. En déduire PAS, probabilité de l'évènement S sachant que l'évènement A est réalisé.

  2. Le questionnaire prélevé est celui d'un client qui est satisfait. Le client a omis de préciser quelle destination il avait choisie. Déterminer la probabilité qu'il ait choisi la destination G (on donnera le résultat sous la forme d'une fraction irréductible).

  3. On prélève successivement au hasard trois questionnaires dans la pile d'enquêtes. On suppose que le nombre de questionnaires est suffisamment élevé pour considérer que les tirages successifs sont indépendants.
    Calculer la probabilité de l'évènement : « les trois questionnaires sont ceux de clients insatisfaits » (on donnera le résultat arrondi au millième).


exercice 3 ( 4 points ) commun à tous les candidats

Un centre d'appel comptait en 2001 soixante-six employés. Le tableau ci-dessous donne l'évolution du nombre d'employés en fonction du rang de l'année.

Année 2001200220032004200520062007
Rang de l'année xi1234567
Nombre d'employés yi66104130207290345428

On cherche à étudier l'évolution du nombre y d'employés en fonction du rang x de l'année. Une étude graphique montre qu'un ajustement affine ne convient pas.
On pose alors z=y-3.

  1. Recopier et compléter le tableau suivant (on donnera les résultats sous forme décimale, arrondis au centième)

    Rang de l'année xi1234567
    zi5,12      
  2. Représenter le nuage de points Mixizi associé à cette série statistique, dans le plan muni d'un repère orthonormal d'unité graphique 1 cm.
    Un ajustement affine vous parait-il approprié ? Justifier la réponse.

  3. Déterminer, à l'aide de la calculatrice, une équation de la droite d'ajustement affine de z en x par la méthode des moindres carrés (on donnera les coefficients sous forme décimale, arrondis au centième).
    Tracer cette droite sur le graphique précédent.

  4. En utilisant cet ajustement, à partir de quelle année peut-on prévoir que l'effectif de ce centre d'appel dépassera 900 employés ?


exercice 4 ( 7 points ) commun à tous les candidats

On considère la fonction f définie sur l'ensemble des nombres réels par fx=ax+bex-1+ca, b et c sont trois réels que l'on se propose de déterminer dans la partie A.

On note f la fonction dérivée de f .
La courbe C représentative de f dans le plan rapporté à un repère orthonormal est représentée ci-dessous.
La courbe C passe par le point A15, elle admet la droite D comme tangente en ce point. Le point B02 appartient à la droite D.
La courbe C admet également une tangente horizontale au point d'abscisse -12 .

Courbe représentative de la fonction f : L'illustration svg n'est pas visible par votre navigateur.

partie a

    1. Préciser les valeurs de f1 et f-12.

    2. Déterminer le coefficient directeur de la droite D. En déduire f1

  1. Montrer que, pour tout réel x, fx=ax+a+bex-1

  2. Montrer que a, b et c vérifient le système :{a+b+c=5a+2b=02a+b=3
    Déterminer les valeurs de a, b et c.

partie b

On admet pour la suite de l'exercice que, pour tout réel x, fx=2x-1ex-1+4.

    1. Déterminer limx+fx.

    2. Vérifier que, pour tout réel x, fx=2exex-1eex+4.
      En déduire limx-fx (on rappelle quelimx-xex=0). Que peut-on en déduire pour la courbe C ?

    1. Donner, pour tout réel x, l'expression de fx.

    2. Établir le tableau de variations de f.
      Déterminer le signe de fx pour tout réel x.

    3. Montrer que l'équation fx=6 admet une unique solution réelle α sur l'intervalle 12. On donnera un encadrement de α d'amplitude 0,1.

    Toute trace de recherche, même incomplète, sera prise en compte dans l'évaluation.

partie c

  1. On considère la fonction F définie pour tout réel x par Fx=2x-3ex-1+4x. Montrer que F est une primitive de f sur .

  2. Soit Δ la partie du plan située entre la courbe C, l'axe des abscisses et les droites d'équations x=0 et x=1.
    Calculer l'aire de la partie Δ exprimée en unités d'aire ; on donnera la valeur exacte et la valeur décimale arrondie au dixième.



Télécharger le sujet au format Word


Rechercher des exercices regoupés par thème      

[ Accueil ]

L'affichage recommandé pour une meilleure lisibilité est de 1280 × 1024.

math@es

✉ A.Yallouz

Powered by MathJax