contrôles en terminale STI2D

contrôle du 14 octobre 2016

thèmes abordés

  • Suites.
  • Étude d'une fonction : limites, dérivée, variations.

exercice 1

La température de refroidissement d'une pâtisserie à la sortie du four dépend du type de pâtisserie et de la température ambiante supposée constante de la pièce dans laquelle elle est entreposée.
La température d'une tarte à la sortie du four est de 180°C.
L'évolution de la température de la tarte en fonction du temps est modélisée par la suite Tn définie par T0=180 et, pour tout entier naturel n, Tn+1=0,84×Tn+3,2.
Pour tout entier naturel n, le terme Tn de la suite Tn est égal à la température en degrés Celsius de la tarte n minutes après la sortie du four.

partie a

La tarte peut être sortie de son moule dès que sa température est inférieure à 80°C.
Pour déterminer au bout de combien de minutes la tarte peut être démoulée, on utilise un algorithme.

  1. Recopier et compléter cet algorithme afin qu'il affiche la réponse.

    variables :

    N est un entier naturel
    T est un nombre réel

    initialisation :

    Affecter à N la valeur 0
    Affecter à T la valeur 180

    traitement :

    Tant que T80
    Affecter à T la valeur …
    Affecter à N la valeur …
    Fin Tant que

    Sortie :

    Afficher N

  2. Recopier et compléter autant que nécessaire les colonnes du tableau suivant en arrondissant les résultats à l'unité.

    Valeur de N01
    Valeur de T180
    Condition T80Vraie
  3. Donner la valeur affichée en sortie par cet algorithme et interpréter ce résultat dans le contexte de l'exercice.

partie b

  1. Pour tout nombre entier naturel n, on définit la suite Vn par : Vn=Tn-20.

    1. Montrer que la suite Vn est une suite géométrique dont on précisera le premier terme et la raison.

    2. Exprimer Vn en fonction de n.

    3. En déduire que, pour tout nombre entier naturel n, on a : Tn=160×0,84n+20.

  2. Étudier la monotonie de la suite Tn.

  3. Calculer la limite de la suite Tn et interpréter ce résultat.


exercice 2

Soit f la fonction définie sur l'intervalle 0+ par fx=x2-7x-9x+15.
On note Cf la courbe représentative se la fonction f dans le plan.

  1. Calculer limx0fx et limx+fx. La courbe Cf admet-elle des asymptotes ?

  2. On note f la dérivée de la fonction f.
    Calculer fx et, vérifier que pour tout réel x strictement positif, fx=x-32x2-x-3x2.

    1. Étudier le signe du polynôme gx=2x2-x-3.

    2. Étudier le signe de fx sur l'intervalle 0+.

  3. Donner le tableau de variations de la fonction f.

  4. Déterminer une équation de la tangente (T) à la courbe Cf au point d'abscisse 1.



Télécharger le sujet :

  LaTeX      |      Pdf    


Rechercher des exercices regoupés par thème


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.