Soit f une fonction définie et dérivable sur l'ensemble des réels . On note sa fonction dérivée sur .
On appelle sa courbe représentative, représentée en ANNEXE dans un repère orthonormé. On appelle (T) la tangente à au point A de coordonnées .
On admet que la fonction f admet un maximum en .
Cette partie est un QCM (Questionnaire à Choix Multiples). Chaque question admet une seule réponse exacte. Pour chacune des questions, indiquer sur votre copie le numéro de la question et recopier la réponse choisie. Il n'est pas demandé de justification.
Dans cette première partie, une réponse exacte rapporte 0,5 point ; une réponse fausse enlève 0,25 point ; l'absence de réponse ne rapporte ni n'enlève aucun point. Si le total des points est négatif, la note attribuée à cette partie est ramenée à zéro.
Question 1 :
a ) | b ) | c ) |
Question 2 : sur l'intervalle , vérifie :
a ) sur | b ) sur | c ) sur |
Question 3 : l'équation réduite de la tangente à la courbe au point A est :
a ) | b ) | c ) |
Question 4 :
a ) | b ) | c ) n'existe pas. |
On considère la fonction g définie et dérivable sur l'ensemble des réels , telle que . On note sa fonction dérivée sur .
Démontrer que pour tout x appartenant à , .
Étudier le signe de sur et en déduire les variations de g sur .
Calculer et . (On utilisera le résultat suivant : ).
Construire la courbe représentative de g, notée , dans le repère fourni en ANNEXE 1 (sur lequel est construite ).
Donner graphiquement un encadrement par deux entiers consécutifs des coordonnées de I, point d'intersection des courbes et .
On admet maintenant que . Déterminer par le calcul les coordonnées exactes du point I.
Calculer la valeur moyenne de f sur ; on donnera d'abord sa valeur exacte puis sa valeur approchée à 10− 2 près.
donc la fonction g est une primitive de la fonction f.
Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.