contrôles en terminale ES

Contrôle du 29 avril 2009

thèmes abordés

  • Calcul intégral.
  • Graphe probabiliste et suites.
  • Probabilités.

exercice 1

On considère la fonction f définie sur par fx=e1-x+x2.
On note Cf sa courbe représentative dans un repère orthogonal du plan d'origine O. (Unités : 2 cm sur l'axe des abscisses et 0,5 cm sur l'axe des ordonnées).
La partie hachurée ci-dessous est limitée par la courbe Cf, l'axe des abscisses, l'axe des ordonnées et les droites d'équation x=-1 et x=1.

Courbe représentative de la fonction f : L'illustration svg n'est pas visible par votre navigateur.
  1. Montrer que la droite d'équation y=x2 est asymptote à la courbe Cf en + ∞.

    1. Calculer fx.

    2. Résoudre dans l'inéquation 12-e1-x>0

    3. Établir le tableau des variations de la fonction f . En déduire le signe de f.

  2. Calculer, en cm2, l'aire 𝒜 de la partie hachurée.


exercice 2 : élèves n'ayant pas suivi l'enseignement de spécialité

D'après sujet bac Pondichery 2009

partie a

Cette première partie est un questionnaire à choix multiples. Pour chacune des questions suivantes trois réponses sont proposées, une seule de ces réponses convient.
Sur votre copie, noter le numéro de la question et recopier la réponse exacte. Aucune justification n'est demandée. Une seule réponse est acceptée.

Barème : Une réponse exacte rapporte 0,75 point, une réponse inexacte enlève 0,25 point ; l'absence de réponse à une question ne rapporte ni n'enlève de point. Si le total donne un nombre négatif, la note attribuée à cette partie sera ramenée à zéro.

Rappel de notations : pA désigne la probabilité de A, pBA désigne la probabilité conditionnelle de A sachant B, pAB signifie la probabilité de « A ou B » et pAB signifie la probabilité de « A et B ».

  1. On lance un dé cubique équilibré. Les faces sont numérotées de 1 à 6. La probabilité d'obtenir une face numérotée par un multiple de 3 est

    16

    13

    12

  2. Soient A et B deux évènements tels que pA=0,2, pB=0,3 et à pAB=0,1 ; alors

    pAB=0,4

    pAB=0,5

    pAB=0,6

  3. Soient A et B deux évènements indépendants de probabilité non nulle, alors on a obligatoirement :

    pAB=0

    pAB=pBA

    pAB=pA×pB

  4. Une expérience aléatoire a trois issues possibles : 2 ; 3 et a (où a est un réel). On sait que p2=12, p3=13 et pa=16.
    On sait de plus que l'espérance mathématique associée est nulle. On a alors

    a=-12

    a=6

    a=-5


partie b

Dans cette partie toutes les réponses seront justifiées.

Dans un club de sport, Julien joue au basket. Il sait que lors d'un lancer sa probabilité de marquer un panier est égale à 0,6.

  1. Julien lance le ballon quatre fois de suite. Les quatre lancers sont indépendants les uns des autres.

    1. Montrer que la probabilité que Julien ne marque aucun panier est égale à 0,0256.

    2. Calculer la probabilité que Julien marque au moins un panier.

  2. Combien de fois Julien doit-il lancer le ballon au minimum pour que la probabilité qu'il marque au moins un panier soit supérieure à 0,999 ?

    Toute trace de recherche, même incomplète, sera prise en compte dans l'évaluation.


exercice 2 : élèves ayant suivi l'enseignement de spécialité

Un opérateur de téléphonie mobile propose à ses abonnés deux forfaits :

On admet que d'une année sur l'autre, le nombre de clients de cet opérateur est stable et que :

En 2008, 80% des clients de cet opérateur étaient abonnés à la formule A.

  1. Représenter les données précédentes par un graphe probabiliste G de sommets A et B et donner sa matrice de transition.

  2. Pour un entier naturel n donné, on note Pn=anbn avec an+bn=1, la matrice ligne décrivant l'état probabiliste lors de l'année 2008 + n.
    L'état probabiliste initial est donc P0=0,80,2

    1. Calculer la probabilité qu'un client soit abonné à la formule A en 2009.

    2. Montrer que, pour tout entier naturel n, an+1=0,5an+0,2

  3. On pose, pour tout entier naturel n : un=an-0,4

    1. Démontrer que la suite un est une suite géométrique de raison 0,5.

    2. Exprimer un en fonction de n et en déduire que, pour tout entier naturel n : an=0,4×1+0,5n

    3. Déduire de ce qui précède, la limite de la suite an. Donner une interprétation concrète de ce résultat.

    4. À partir de quelle année, la probabilité qu'un client soit abonné à la formule A sera-t-elle inférieure à 0,401 ?


exercice 3

Les parties A et B de cet exercice sont indépendantes.

partie a :

La courbe Γ ci-dessous représente, dans un repère orthonormé, une fonction F définie et dérivable sur . On note F la fonction dérivée de F.
La courbe Γ passe par les points A-20, B46 et C.
L'axe des abscisses est asymptote à la courbe Γ en + ∞
La courbe Γ admet une tangente parallèle à l'axe des abscisses au point C d'abscisse 2 et la tangente au point d'abscisse 4 passe par le point D84.

Courbe représentative de la fonction F : L'illustration svg n'est pas visible par votre navigateur.
  1. Déterminer une équation de la droite (BD).

  2. À partir du graphique et des renseignements fournis :

    1. Déterminer la limite de la fonction F en + ∞.

    2. Dresser le tableau de signes de F sur

    3. Déterminer F2 et F4.

    4. Déterminer -24Fxdx.

partie b :

On considère trois fonctions f1, f2 et f3 définies sur par : f1x=x28-x+32;f2x=2xx2+8-x4+16etf3x=2-xe1-x44

  1. Étudier le signe de f1 sur et calculer -24f1xdx.

  2. Soit g la fonction définie sur par gx=lnx2+8

    1. Calculer gx. En déduire une primitive F2 de la fonction  f2.

    2. Calculer -24f2xdx.

    1. Étudier le signe de f3 sur

    2. Une primitive de la fonction f3 est la fonction F3 définie sur par F3x=ax+be1-x4a et b sont deux réels. Montrer que F3x=-ax+4a-be1-x44 puis, déterminer a et b.

    3. Calculer -24f3xdx.

partie c :

La fonction F de la partie A est la primitive qui s'annule en − 2 d'une des trois fonctions f1, f2 ou f3 définies dans la partie B. Calculer F2.
Toute trace de recherche, même incomplète, sera prise en compte dans l'évaluation.



Télécharger le sujet :

  LaTeX      |      Pdf      |      Word  


Rechercher des exercices regoupés par thème


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.