contrôles en terminale ES

contrôle du 23 janvier 2018

thèmes abordés

  • Graphes : chaîne eulérienne
  • Suite arithmético-géométrique
  • Fonction exponentielle

exercice 1

Le graphe Γ ci-dessous, modélise le plan d'un parc de loisirs. Les arêtes du graphe représentent les allées du parc et les sommets les attractions.

Graphe : L'illustration svg n'est pas visible par votre navigateur.
  1. Donner l'ordre du graphe puis le degré de chacun des sommets.

  2. On range les sommets par ordre alphabétique. Compléter la matrice d'adjacence M associée au graphe : M=010010111010000001010000001011011000110110010010.

  3. On donne les matrices M2=4012122102011011102011012104113011114223201123122103214111103213 et M3=452510588503222223052141525210849102210671045318749482441096982194492

    1. En détaillant le calcul, déterminer le coefficient de la deuxième ligne et sixième colonne de la matrice M3.

    2. Donner, en justifiant, le nombre de chaînes de longueur 3 reliant B à F. Les citer toutes.

  4. Déterminer en justifiant si ce graphe est :

    1. complet ;

    2. connexe.

  5. En justifiant la réponse, dire si ce graphe admet une chaîne eulérienne. Si oui, donner une telle chaîne.

  6. Le responsable du parc souhaite réorganiser le nettoyage des allées, par un circuit commençant et finissant par le sommet A et qui passe par toutes les allées une et une seule fois.
    Quel est le nombre minimal d'allées qu'il faudrait ajouter pour obtenir un tel circuit ? Préciser les extrémités.


exercice 2

partie a

Soit un la suite définie par u0=25 000 et pour tout entier naturel n, un+1=0,96un+800.

  1. On considère la suite vn définie pour tout entier naturel n par : vn=un-20 000.

    1. Démontrer que vn est une suite géométrique dont on précisera le premier terme et la raison.

    2. En déduire que pour tout entier naturel n, un=5 000×0,96n+20 000.

  2. Étudier le sens de variation de la suite un.

partie b

Un site internet propose sur inscription un service de jeux en ligne. Le 1er janvier 2018 il y avait 25 000 membres inscrits.
L'évolution hebdomadaire du nombre de membres est modélisée par la suite unun est une estimation du nombre de membres inscrits au bout de n semaines.
Le responsable du site, souhaite déterminer au bout de combien de semaines le nombre de membres inscrits sera inférieur à 20 000.

  1. Voici deux propositions d'algorithmes :

    • U25 000
    • N0
    • U25 000
    • N0

    Tant que U22 000

    • U0,96×U+800
    • NN+1

    Fin Tant que

    Tant que U<22 000

    • U0,96×U+800
    • NN+1

    Fin Tant que

    Algorithme 1Algorithme 2

    Un seul de ces algorithmes permet de calculer le plus petit entier naturel n tel que un<22 000.
    Préciser lequel en justifiant pourquoi l'autre algorithme ne le permet pas.

    1. Résoudre dans l'ensemble des entiers naturels l'inéquation : 5 000×0,96n+20 000<22 000.

    2. En déduire la valeur de la variable N à la fin de l'exécution de l'algorithme choisi à la question précédente et interpréter cette valeur dans le contexte de l'exercice.


exercice 3

Soit f une fonction définie sur l'intervalle 06 par fx=2e0,5x-e2x.
On admet que la fonction f est deux fois dérivable. On note f sa dérivée et f sa dérivée seconde.

  1. Calculer fx.

    1. Montrer que l'équation fx=0 admet pour unique solution le nombre a=21-ln2.

    2. Étudier le signe de fx sur l'intervalle 06.

    3. En déduire le tableau complet des variations de la fonction f sur l'intervalle 06.
      On précisera les valeurs exactes de f0, fa et f6.

    1. Montrer que dans l'intervalle 06, l'équation fx=12 admet une unique solution α.

    2. À l'aide de la calculatrice, donner la valeur arrondie à 10-2 près de la solution α.

  2. Déterminer une équation de la tangente 𝒟 à la courbe 𝒞f représentative de la fonction f au point A d'abscisse 2.

  3. Quelle est la position relative de la courbe 𝒞f par rapport à sa tangente 𝒟 ?



Télécharger le sujet :

  LaTeX      |      Pdf    


Rechercher des exercices regoupés par thème


[ Accueil ]


Les documents présentés ne sont pas libres de droits. Vous pouvez les télécharger et diffuser (en indiquant la provenance) à condition de ne pas en faire un usage commercial.